RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIFTH SEMESTER EXAMINATION, DECEMBER 2013 THIRD YEAR

CHEMISTRY (Honours)

Time : 11 am – 1 pm Paper : V-B Full Marks : 50

[Answer <u>one</u> question from each unit]

Unit - I

- 1. a) Draw the preferred conformation of 1-methyl-1-phenyl cyclohexane and justify your answer. [2]
 - b) Predict with reasons, which one of the following pair will undergo faster oxidation with chromic acid. [3]

trans-4-t-butylcyclohexanol and cis-4-t-butylcyclohexanol

c) Use Felkin-Anh model to explain the formation of major product : [3]

Et
$$\stackrel{\text{H}}{\longrightarrow}$$
 O i) MeMgBr/Ether ii) H_3O^+

: 19/12/2013

Date

- d) Explain the fact that the ketone, Ph-CO-CHMe₂ on treatment with (S)-Ph-CHEt-CH₂MgCl, is reduced preprentially to the alcohol, (S)-PhCHOH-CHMe₂.
- e) Represent 1-methylcyclohexane in Newman projection formula and estimate the energies between two conformers.

[2]

[2]

[3]

- 2. a) Draw the energy diagram for the ring inversion of cyclohexane following the C₂-pathway and explain the diagram.
 - explain the diagram. [3]
 b) Explain that *trans*-4-t-butylcyclohexyl tosylate undergoes elimination to give 4-t-butlcyclohexene with the base SPh although not with much stronger base OEt . [3]
 - c) Predict the product(s) with mechanism: [3+3]

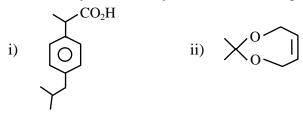
i) Br
$$\xrightarrow{\text{Zn/MeOH}}$$
?

$$ii) \qquad \overbrace{ \begin{array}{c} CH_3 \\ \ominus \\ NMe_2 \\ \bigcirc \\ \end{array}} \xrightarrow{Heat} ?$$

Unit - II

- 3. a) What is a synthon? Give one example of compounds that may form a² and d¹ types of synthons. [3]
 - b) Give retrosynthetic analysis and efficient synthesis for each of the following ($\underline{any two}$): [2½×2]

$$i) \qquad \qquad ii) \qquad Ph \qquad \qquad iii) \qquad CO_2E$$


- c) What is Merrifield resin? Write the steps for the synthesis of the dipeptide gly-ala in the solid phase with the help of this resin.
- d) Write the mechanism of ninhydrin reaction with an amino acid $R NH CH_2 CO_2H$ [2]
- 4. a) How would you carry out the following transformations? (any two) [2½×2]

$$i)$$
 Br CHO \longrightarrow CHO

$$_{ii)}$$
 $\stackrel{O}{\longleftarrow}$ $\stackrel{O}{\longleftarrow}$ $\stackrel{OH}{\longrightarrow}$ $_{Br}$

iii)
$$CH_3COCH_2CO_2Et \rightarrow \bigcirc COCH_3$$

- b) Explain, with mechanism, the role of dicyclohexylcarbodiimide in the formation of the peptide linkage between two different suitably blocked amino acids.
- c) Trace the route of synthesis of R-CH(NH₂)-CO₂H from phthalimide. [2]
- d) Give retrosynthetic analyses of the following and show their forward synthesis also : (any one)

<u>Unit - III</u>

- 5. a) Define chemical shift and explain the terms—
 - (i) downfield and (ii) upfield shifts as used in NMR spectroscopy.

[3]

[3]

[3]

- b) How would you distinguish between the members of each of the following pairs of compounds as indicated. [2×3]
 - i) *trans*-stilbene and *cis*-stilbene (by uv spectroscopy)
 - ii) ortho-chloronitrobenzene and para-chloronitrobenzene (by NMR spectroscopy)
 - iii) *ortho*-hydroxyacetophenone and *para*-hydroxyacetophenone (by IR spectroscopy)
- c) Draw the ¹HNMR signals of CH₃CH₂OH (ordinary grade) showing relative chemical shifts, integration and spin-spin coupling patterns. [3]
- 6. a) An organic compound [B] having molecular formula C_4H_8O absorbs at 274 nm($\in_{max}=17$) in uv spectroscopy. In IR, a strong absorption band is found at 1715 cm⁻¹, and medium absorption band are formed at 2940 2860 cm⁻¹(m) and 1460 cm⁻¹(m). The signals in NMR spectrum are (i) $\delta 2.48$ (quartet), (ii) $\delta 2.12$ (s) and (iii) $\delta 1.07$ (t).

Assign the structure of [B], explaining the spectroscopic observations.

[4]

- b) In n-hexane, mesityl oxide [Me₂C = CHCOMe] shows two absorption peaks at λ_{max} 230nm and 270nm. Identify the electronic transition for each of them. Explain how these λ_{max} values shift if water is used as solvent instead of n-hexane.
- water is used as solvent instead of n-hexane. [3]
 c) Why TMS is used in NMR spectroscopy? [2]
- d) Calculate λ_{max} in uv spectrum for the following compound using Woodward-Hofmann's rule. [3]

Unit - IV

- 7. a) Indole undergoes electrophilic substitution primarily at C–3 but pyrrole does at C–2. Explain. [2]
 - b) How can you convert naphthalene to 2-aminonaphthalene?

[3]

[3]

c) Write the structure of the product showing the steps of reaction, when β -phenylethylamine is heated with acetyl chloride in presence of POCl₃ and the resulting product is heated with palladium-charcoal.

OMe OMe
OMe
[2]

e) Outline the synthesis of ranitidine and mention one use of it.

Carryout the following conversions. Write down the reaction conditions and the reagents involved. [2×2]

[3]

$$i) \quad \overbrace{ \bigvee ^{CH_3}_{NH_2}} \quad \overbrace{ \bigvee ^{N}_{CH_2}}$$

i)
$$CH_3$$
 CH_3 CH_3

ii) $CH_3COCH_2CO_2C_2H_5 \rightarrow Me$

Me

Me

Me

b) Convert : Phthalic acid \rightarrow 9-methylanthracene. [2]

c) Identify the products [E] and [F] in the following reactions and explain the reaction scheme : [4]

HCHO+Me₂NH
$$\longrightarrow$$
 [E]
$$Pyrole [F]$$
[4]

d) Outline the synthesis of nifedipine. Mention one use of it. [3]

多線の